Im YoungMin

Luis Ángel (임 영민)


My Portfolio

I am a computer scientist and software engineer interested in Computational Science (Scientific Computing), Computer Graphics, and Machine Learning. I am currently a graduate student at the University of California, Santa Barbara, where I am member of the Computational Applied Science Laboratory, advised by Prof. Frédéric Gibou.

Curriculum Vitae

Latest Projects

Project Image

A Hybrid Inference System for Improved Curvature Estimation in the Level-Set Method Using Machine Learning

We present a novel hybrid strategy based on machine learning to improve curvature estimation in the level-set method. The proposed inference system couples enhanced neural networks with standard numerical schemes to compute curvature more accurately. The core of our hybrid framework is a switching mechanism that relies on well established numerical techniques to gauge curvature. If the curvature magnitude is larger than a resolution-dependent threshold, it uses a neural network to yield a better approximation. Our networks are multilayer perceptrons fitted to synthetic data sets composed of sinusoidal- and circular-interface samples at various configurations. To reduce data set size and training complexity, we leverage the problem's characteristic symmetry and build our models on just half of the curvature spectrum. These savings lead to a powerful inference system able to outperform any of its numerical or neural component alone. Experiments with static, smooth interfaces show that our hybrid solver is notably superior to conventional numerical methods in coarse grids and along steep interface regions. Compared to prior research, we have observed outstanding gains in precision after training the regression model with data pairs from more than a single interface type and transforming data with specialized input preprocessing. In particular, our findings confirm that machine learning is a promising venue for reducing or removing mass loss in the level-set method.


Project Image

A Deep Learning Approach for the Computation of Curvature in the Level-Set Method

We propose a deep learning strategy to estimate the mean curvature of two-dimensional implicit interfaces in the level-set method. Our approach is based on fitting feed-forward neural networks to synthetic data sets constructed from circular interfaces immersed in uniform grids of various resolutions. These multilayer perceptrons process the level-set values from mesh points next to the free boundary and output the dimensionless curvature at their closest locations on the interface. Accuracy analyses involving irregular interfaces, both in uniform and adaptive grids, show that our models are competitive with traditional numerical schemes in the L1 and L2 norms. In particular, our neural networks approximate curvature with comparable precision in coarse resolutions, when the interface features steep curvature regions, and when the number of iterations to reinitialize the level-set function is small. Although the conventional numerical approach is more robust than our framework, our results have unveiled the potential of machine learning for dealing with computational tasks where the level-set method is known to experience difficulties. We also establish that an application-dependent map of local resolutions to neural models can be devised to estimate mean curvature more effectively than a universal neural network.

SIAM J. Sci. Comput., 43(3): A1754-A1779.