
Discussion Session 4

Luis Ángel Larios Cárdenas

January 29, 2016

1 Singular Value Decomposition

The Singular Value Decomposition or SVD allows us to break any matrix (square or rectangular) into the
product of three matrices. Let A be an n× p matrix, then, its SVD is given by:

A = U S V ′

where U is an n×n orthogonal matrix whose columns are the left singular vectors v̂i, S is an n× p diagonal
matrix that holds the singular values σi, and U is a p × p orthogonal matrix whose columns are the right
singular vectors ûi. Figure 1 is an schematic representation of the SVD of matrix A.

Figure 1: Block representation of the SVD of A.

We can analyze matrix the SVD of matrix A from two perspectives: when A represents a transformation,
and when A is a dataset.

1.1 SVD of a Transformation Matrix

Like in the Eigendecomposition analysis, a matrix A is a transformation or change of basis that can be broken
into three steps: a rotation, a dilation, and another rotation. The SVD is not different, but is more general
than the Eigenstructure. Consider, for instance, the following transformation matrix T :

T =

(
1.5 2.0 1.0
2.1 1.0 0.5

)
T is a 2 × 3 matrix. As a transformation matrix, it takes points in 3D space, and project them (i.e.

removes one dimension) onto a 2D space. Figures 2 and 3 show what T does the unit 3D sphere: if flattens,
stretch, and tilt the sphere into a 2D ellipsoid.

But, how can we explain this behavior of T? We just need to look at its SVD. Given that T = U S V ′, V
is an orthogonal 2×2 matrix, S is a diagonal 2×3 matrix, and U is an orthogonal 3×3 matrix. In the same

1

Figure 2: The unit sphere as transformed by T (one view).

Figure 3: The unit sphere as transformed by T (another view).

way we approached the Eigendecomposition in our previous notes1, T is just a series (or concatenation) of
transforms. Let a be a vector in 3D, then:

1Notes available at CCLE or at http://youngmin.one/documents/ta/cs170A-W16/Session2.zip

2

b = f(a)

b = Ta

b = USV ′a

b = 0U1 1S2 2(V ′)3 a

where the transformation matrix iM j indicates that M maps points expressed in terms of the j coordinate
system, into its equivalence with respect to coordinate system i.

So, given our 2 × 3 transformation matrix T , the following happens:

1. 2(V ′)3 gives us the coordinates of the 3D point a, but now with respect to the coordinate system

0U1 1S2 —here, the point is still in 3D, it was just rotated around.

2. 1S2 gives us the coordinates of the (still) 3D point 2(V ′)3 a, but now with respect to the coordinate
system 0U1 —here, notice what has happened: we have lost one dimension! S stretched 2 of the axes
and zeroed the other one! After the mapping, we are no longer in 3D, but in 2D.

3. Finally, 0U1 gives us the coordinates of the 2D point 1S2 2(V ′)3 a, but now with respect to the
coordinate system 0, which is the “world frame”. The transform U just rotated the poor 2D vector
that it was left with after the 1S2 2(V ′)3 a mutilation.

In summary, our transformation matrix T departed from a 3D coordinate system, and arrived at a 2D
coordinate system. Along the way, the S matrix was the one who took care of removing one of the 3
dimensions by introducing a ‘zero’ singular value (which doesn’t appear in S, of course).

Again, like in the Eigendecomposition, each singular value is matched to a singular vector. Thus, the
largest singular value represents the maximum stretch that T performs on any point. Figure 4 shows the left
singular vectors (i.e. U) being stretched by their respective singular values. You can notice that the largest
ellipsoid axis corresponds to û1 scaled by σ1. Also, the effect of T on the unit sphere (see figure 2), does not
only flattens the sphere, but it ‘twists’ the sphere too, as you may notice in the two subtle pink ellipses that
actually correspond to the original sphere poles.

1.2 SVD of a Dataset

Any n × p matrix A, like the one portrayed in figure 1, can be something different than a transformation:
it can be a dataset with n observations and p features. In this case, the SVD can help us extract hidden
characteristics and further analyze the structure of matrix A.

In particular, when A is an image, we can do image compression by first decomposing A = USV ′,
then keeping only the k largest (significant) singular values: σ1, σ2, · · · , σk, where k < p and k < n, and
reconstructing A as:

A(k) = U (k) S(k)
(
V (k)

)′

where U (k) is an n × k matrix, S(k) is a k × k square matrix, and V (k) is a p × k matrix. We can better
see this assemblage from figure 5, where we only need to keep k left singular vectors ûi and k right singular
vectors v̂i, for 1 ≤ i ≤ k. At the end, A(k) has the same dimensions than A, but the image quality will
depend greatly on how many insignificant singular values we threw away.

As an example, if A = USV ′ is a 600 × 500 gray-scale image (figure 6), we can use the following Matlab
code:

[U, S, V] = svd(A); % U is nxn, S is nxp, and V is pxp.

k = 100;

Uk = U(:, 1:k); % Throw away left singular vectors beyond the k^th.

3

Figure 4: Left singular vectors of T , scaled by their respective singular value.

Figure 5: Block diagram for approximating A but using only the largest k singular values.

Vk = V(:, 1:k); % Throw away right singular vectors beyond the k^th.

Sk = S(1:k, 1:k); % We only need k singular values.

Ak = Uk * Sk * Vk’; % k^th approximation of Taeyeon.

to approximate A, but only with k = 100 singular values. The resulting A(k) can be seen in figure 7.

4

Figure 6: Original image A.

5

Figure 7: “Compressed” image A(k), when we preserve k = 100 singular values.

6

