
CS31 Introduction to Computer Science Review

Luis Ángel Larios Cárdenas

June 5, 2015

Exercise 1

What is the output of the following code snippet? Consider that a boolean is outputted as 1 if true, and 0

otherwise. Assume all necessary libraries have been loaded, and that the std name space is in use.

int array[] = { 4, -2, 0 -5, 3, 3 };

int &a = array[3];

a++;

int *b = array;

b+=4;

*b = -a;

int c = b - &a;

array[c]*= -2;

bool d = *(array+1) == *(b-1);

int* &e = b;

e = array;

cout << a << *b << c << d << *e << endl;

Answer

(a) It won’t run: there’s a compilation error.

(b) Undefined behavior.

(c) 4-4114

(d) 4-410-4

(e) 44114

(f) -44104

1

Exercise 2

The following function is intended to reverse a C string while, at the same time, transforms the string letters
into uppercase. For example, if the input parameter is "exam", it modifies the string into "MAXE". Although
the function compiles, there’s a bug and one of the strings below will not be modified appropriately. What
is such test string? Both <cstring> and <cctype> have been included to check the function.

void reverse(char* str)

{

char* tail = &str[strlen(str)-1];

for(; tail > str; str++, tail--)

{

char temp = toupper(*tail);

*tail = toupper(*str);

*str = temp;

}

}

Answer

(a) "albatroz"

(b) "RISE OF ROME"

(c) "European"

(d) "Mediterranean"

(e) "deep lake"

(f) "A diligent 1st-class"

(g) "K Pop"

2

Exercise 3

We are attempting to write a function that finds the first occurrence of a C string within another string.
Our function should return a pointer to s1 if s2 is found. Thus, for example, if s1 is "Hey, you!", and s2

is "y, ", strInStr() must return a pointer to the character at the subscript 2 of s1. If s2 is not found in
s1, a nullptr should be returned. Your task is to fix the function by fixing the pointer usage appropriately.

const char* strInStr(const char* s1, const char* s2)

{

const char* b = s2;

while(s1 != 0 && s2 != 0)

{

if(*s1 == *s2)

{

const char a;

for(a = s1; s1 == s2; *s1++, *s2++)

;

if(s2 == 0)

return a;

s1 = a;

s2 = b;

}

*s1++;

}

return nullptr;

}

Even after fixing the pointer notation in strInStr(), our function is not quite right yet. It has a bug that
yields undefined behavior for some unfortunate input combinations. Which of the following input choices will
make your function run into undefined behavior?

(a) s1 = "A christmas tale" and s2 = ""

(b) s1 = "Hello, World" and s2 = "llo "

(c) s1 = "We are! we are!" and s2 = "are!"

(d) s1 = "Hey, bring pizza" and s2 = "bring piza"

(e) s1 = "Deadly sins" and s2 = "deadly"

(f) s1 = "Jurassic Park" and s2 = "Jurassic World"

(g) s1 = "La vida loca" and s2 = "loca"

(h) s1 = "Age of Empires 1" and s2 = "Age of Empires 2"

(i) s1 = "" and s2 = "Oh, no!"

3

Exercise 4

Complete the definition of a class Rational to execute fractional arithmetics. The class contains two private

data members, a private utility function to simplify the fraction, and public accessors to the numerator
and denominator. The class must have two constructors: a default one that initializes both num and den to
1, and a constructor with parameters that stores the fraction in simplified form (i.e. by using the auxiliary
private function simplify()) – for example, the rational number

−2

4

should be stored as num = -1, and den = 2. When a new Rational number is created, you should keep the
fraction sign always in the numerator.

Besides the provided public functions, you must add the following methods (both prototype and defini-
tion):

(a) Add two Rational numbers (i.e. get as input the other summand), and return a simplified Rational

number result. (Should not be larger than 5 lines of code.)

(b) Multiply two Rational numbers, and return a simplified Rational number product. (Should not be
larger than 4 lines of code.)

(c) Print the Rational number in the format "num/den". (Should not be larger than 1 line of code. Assume
that iostream and using namespace std were properly included.)

class Rational

{

private:

int num; // Numerator.

int den; // Denominator.

void simplify() // Utility function to simplify a fraction.

{

// TODO: Complete the definition. (Note: be aware that the numerator may

// be negative!)

}

4

public:

Rational(int num, int den) // Constructor with parameters.

{

// TODO: Assign num and den to numerator and denominator respectively.

// Fractions such as 1/-2 should be stored as -1/2, -1/-2 as 1/2, and 2/4 as 1/2.

// Use simplify() within this function.

}

Rational() // Default constructor.

{

// TODO: One liner.

}

int getNum() const // Return the value of numerator.

{

// TODO: One liner.

}

int getDen() const // Return the value of denominator.

{

// TODO: One liner.

}

// TODO: Declare and define here the ’add’ function: it should

// get as a parameter a reference to a constant Rational number

// and return the result of adding that operand to this object.

5

// TODO: Declare and define here the ’multiply’ function: it should

// get as a parameter a reference to a constant Rational number

// and return the product of that number with the current object.

// TODO: Declare and define here the ’print’ function that

// cout’s this Rational number in the format "num/den". It should

// not return anything.

}; // End of Rational class.

Test your class (and Math). What are the results of the cout statements in the following main function?

int main()

{

Rational r1(2, -4);

Rational r2(-1, 3);

r1.add(r2).print(); // What is outputted?

r2.multiply(r1).print(); // What is outputted?

return 0;

}

6

Exercise 5

We would like to create a PlayList class, which is made of up to 100 Song objects. The Song class holds
important string properties such as title, genre, singer, and a pointer to the PlayList it belongs to.
The only possible usefulness of a Song is to print a list of other similar songs (by genre) that reside in its
PlayList.

On the other hand, a PlayList object can dynamically allocate up to 100 Song objects by calling its
member function addSong(). Additionally, knowing that the user can get tired of the songs from a particular
artist, the PlayList class offers the method removeSongsBySinger, which removes all songs corresponding
to a given singer. Finally, the PlayList class also allows users to get a refined list of songs that match certain
genre criterion.

Your job is to complete the definitions of the following class declarations. You may find the comments
in the function prototypes helpful when defining their content. At the end of the classes there is a small
main() function to test your classes and understanding of the task. It’s recommendable to go over the main()
function and its desired output first in order to better understand the expected behavior.

///////////////////////////////// Class declarations /////////////////////////////////////

const int MAX_SONGS = 100;

class PlayList; // Forward declaration.

class Song

{

private:

string title; // Song’s title.

string genre; // Song’s genre.

string singer; // Song’s singer.

PlayList* playListPtr; // Pointer to its playlist.

public:

// Constructor.

// Parameters: t => title, g => genre, s => singer, ptr => playListPtr.

Song(string t, string g, string s, PlayList* ptr);

// Accessors to private members.

string getTitle() const;

string getGenre() const;

string getSinger() const;

// Display (cout) the all songs in its playlist that match

// "this" song’s << genre >>.

void getSimilarSongs() const;

};

class PlayList

{

private:

int nSongs; // Effective number of songs.

Song* songs[MAX_SONGS]; // An array of up to MAX_SONGS dynamically

// allocated Song objects.

public:

// Constructor: just initializes nSongs to 0.

PlayList();

7

// Destructor: delete all remaining Song objects pointed to by the array songs[].

~PlayList();

// Add a song.

// Allocate a new dynamic song with the given properties. Upon success (e.g. there

// still space in songs[]) return a pointer to the (constant) newly created Song

// object; otherwise, return nullptr.

const Song* addSong(const string title, const string genre, const string singer);

// Populate the list[] array with pointers to songs that have the given genre.

// Return the number of Song pointers you inserted in list[].

int getSongsByGenre(const string genre, Song* list[]) const;

// Removing all songs that correspond to some artist.

// Delete the dynamically created Song objects whose artist is singer.

// Return the number of removed songs.

int removeSongsBySinger(const string singer);

};

////////////////////////////// Class definitions for Song //////////////////////////////

Song::Song(string t, string g, string s, PlayList* ptr)

{

}

string Song::getTitle() const

{

}

string Song::getGenre() const

{

}

string Song::getSinger() const

{

}

void Song::getSimilarSongs() const

{

}

8

////////////////////////////// Class definitions for PlayList //////////////////////////////

PlayList::PlayList()

{

cout << "Playlist has been created, and it’s empty" << endl;

}

PlayList::~PlayList()

{

cout << "Playlist has been destroyed." << endl;

}

const Song* PlayList::addSong(const string title, const string genre, const string singer)

{

cout << "No more songs can be added" << endl;

return nullptr;

}

int PlayList::getSongsByGenre(const string genre, Song* list[]) const

{

int count = 0;

return count;

}

9

int PlayList::removeSongsBySinger(const string singer)

{

int deleted = 0;

return deleted;

}

////////////////////////////////// Testing the classes /////////////////////////////////

int main()

{

PlayList pl;

pl.addSong("I promised myself", "Pop", "ATeens");

pl.addSong("In the end", "Rock", "Linkin Park");

const Song* s1 = pl.addSong("What you waiting for?", "Pop", "Gwen Stefani");

pl.addSong("Call me baby", "KPop", "EXO");

pl.addSong("Upside down", "Pop", "ATeens");

s1->getSimilarSongs();

int r = pl.removeSongsBySinger("ATeens");

cout << "Removed: " << r << " songs!" << endl;

s1->getSimilarSongs();

return 0;

}

///////////////////////////////////// Desired Output /////////////////////////////////////

Playlist has been created, and it’s empty

’I promised myself’ by ATeens

’What you waiting for?’ by Gwen Stefani

’Upside down’ by ATeens

Removed: 2 songs!

’What you waiting for?’ by Gwen Stefani

Playlist has been destroyed.

10

