Structured Programming Guidelines

David Smallberg Luis Angel Larios Céardenas
April 16, 2015

1 Flow Charts

A Flow Chart is a graphical interpretation to an algorithm. It graphically
shows the steps or processes we need in order to solve a problem. A flow chart
is very important because we can write a program in any programming language
by departing form a well-constructed flow chart. If the flow chart is complete
and correct, moving on to programming is relatively straightforward.

Flow chart symbols are shown in table 1. They satisfied the “International
Organization for Standardization” (ISO) and the “American National Standards
Institute” (ANSI) recommendations.

1.1 Rules for Building Flow Charts

Figure 1 represents the stages we must follow during the construction of a flow
chart. Our presented symbols, appropriately laid out, allow us to create a
flexible, graphical structure to illustrate the steps necessary to reach a specific
result.

start

" input /

‘ data processing

output

end

o/

/

Figure 1: Stages for building a flow chart.

The following is a series of rules to construct flow charts:

Symbol Description
Defines start and end of the flow chart.

Data input. Indicates reading.

Represents a process. It is used to indicate assign-
ments, arithmetic operations, etc.

Represents a decision. It is used to indicate a con-
o dition, and upon its evaluation we follow the appro-
lno priate branch.

yes
S—

) ; Represents a multiple decision. It is used to indicate
¢ Y a selector, and depending on the selector’s value, we
l— l l _l follow one of the alternative paths.

Indicates printing, either to screen or to an external
device. Represents writing.

Express the flow direction in a flow chart.

Represents connection within the same page.

Represents connection among different pages.

Indicates a call to a module or sub-routine within
the program. Actually, it represents a sub-problem
we must solve in order to continue with the execution
of the flow chart.

Table 1: Flow chart symbols

(a) Any flow chart must have a start and end (see figure 2).

(b) The lines you use to indicate flow direction must be straight, and vertical
or horizontal.

(c) All lines used to indicate action flow must be connected. The connection
must arrive to symbols such as input, output, process, decision, connection,
or program end.

(d) A flow chart must be built from top to bottom, or from left to right.

(e) The notation you use in a flow chart must be independent of any program-
ming language.

(start)

Figure 2: Starting and ending a flow chart.

(f) You may add “comments” or “annotations” to complex tasks within the
flow chart.

(g) If the flow chart requires more than one page for its construction, use con-
nectors appropriately.

1.2 Flow Chart Examples

Next, we present a few examples so that the reader can familiarize and develop
skills to solve problems by using flow charts. Later, we will show how to translate
flow charts into C++.

Example 1: Simple Sequence of Actions

Write a program where the user inputs two integers A and B, and it computes
and writes the result of the following expression:

(A+ B)?
3

Solution

The flow chart that represents the solution for this problem is shown in figure
3. We can notice the sequential nature of the flow chart, indicating how one
step takes us to another, until we finally reach the end node. Moreover, it is
possible to add comments, thus making a flow chart more readable and easier
to translate into C++ in a later task.

Notice, too, that we do not have to stick to any programming language
syntax. A flow chart is independent, flexible, and easy to adapt to the pro-
grammer’s style. For instance, we have written a mathematical expression as
result = ((A + B)"2) / 3, which does not rely on any standard conven-
tion.

start

m {Read Aand B}

result=((A+B)"2)/3 { Compute result }

result { Print result }

end

Figure 3: Solution to example 1.

Example 2: Simple Selective Structure

Write a program such that, given a worker’s salary, adds 15% to it if his salary
is less than $1,000. Print, on this case, the new worker’s salary.

Solution

Figure 4 shows the flow chart solution to this problem. Here, we introduce a
selective structure: if - then.

{ Read worker’s salary }

{ Evaluate current salary }

{ Compute raised salary } salary = 1.15 * salary

{ Print new salary }
_

Figure 4: Solution to example 2.

If the worker’s salary is less than $1,000, we follow the branch labeled with
yes, and then we proceed to increase the salary and print it. If the salary is

at least $1,000, we do not have to do anything to the salary, and we simply
terminate the program. The latter is indicated with a “bent” arrow labeled
no, which departs from the condition and connects to the flow exactly before
reaching the end of the program.

Example 3: Double Selective Structure

Write a program such that given as input a worker’s salary, it applies a 15%
increment if his salary is less than $1,000 and 12% otherwise. Print the new
worker’s salary.

Solution

Figure 5 shows a flow chart to solve this problem. We have introduced an
if - then - else structure. Unlike the solution in figure 4, we now have
two branches with actions or processes that are executed depending on the
evaluation of the condition. Observe, however, that both yes and no paths join
in a common point exactly before printing the new salary. Furthermore, we took
out the outputting of the new salary from the individual yes and no branches
with the purpose of avoiding duplication of the same action. By eliminating
redundancy like the one pointed here, our program will be less prone to errors
during the translation stage.

i\\sa/ary < 100\0\ L

salary = 1.15 * salary salary = 1.12 * salary ‘

l

v

salary ‘

1

N/
Figure 5: Solution to example 3.

Example 4: Looping — While

Write a program that collects (gets as input) the salary of 10 workers and prints
the average salary in the group.

Solution

We now need to resort to a different type of structure — a repetitive statement or
loop. Our first choice of loop is a while, which executes a sequence of actions as
long as a leading condition holds. Figure 6 shows the solution to our problem.

/

start)

sum =0

k=0 { Control variable }
{ While —loop } "~
- ~._ ho
< k<10 »
yes
/
/ salary /

sum = sum + salary L sum/ 10 J

Figure 6: Solution to example 4.

As we can see, when the condition k < 10 is true, we proceed to collect a
salary and add it to a cumulative variable sum (which was previously initialized
to zero). After processing the input salary and updating sum, a control vari-
able is incremented, indicating we are done with the current worker’s salary.
Thus, the flow goes back to the loop condition, we check if indeed k < 10, and
determine whether we should continue with yet another iteration or finish the
while-loop by following the no branch. Finally, upon exhausting the loop, we
print the average, and finish the program by reaching the end node.

Example 5: Looping — Do- While
Write a program that keeps reading an integer from the user, until he inputs a
number that is multiple of 2.

Solution

Figure 7 presents the solution to this problem. Omne particular feature in our
example is that we are required to keep asking the user for a number, until he
enters an even integer. In this case, we do not know how many times the user
will fail to give a valid input. This setting suggests a loop, where the condition

to break it is a user’s input corresponding to a multiple of 2. Moreover, the only
certainty we have is that we must read the user’s input at least once.

num / { Control variable }

<num % 21=0 > { Do-While - loop }

L& P
~ -
IHO
e d\
\ en)
. 4

yes

Figure 7: Solution to example 5.

A variation of a loop that fits our requirements is the do-while structure.
As we can see in figure 7, the body of the loop is executed one or more times,
depending on the control variable, which, in this case, corresponds to num (e.g.
an unpredictable user’s input). Notice, though, that we have used C++ notation
to represent the modulo operation and the difference operator with the % and
= symbols, respectively.

Example 6: Looping — For

Write a program that computes and prints the product of the odd integers
between 1 and 15, inclusive.

Solution

A for-loop is another iterative structure that we can use in problems that
require repetition. Figure 8 shows our approach for solving example 6. There,
we have introduced a new flow chart symbol that, more or less, summarizes the
compact structure of a for-loop. In other words, a while structure can easily
supersede a for-loop, but the latter, by nature, is a simplification that moves all
looping-control to one location: a statement (one box) with the initialization,
the stay-in-loop-condition, and the prepare-for-nezt-iteration controllers in the
same place.
The for-loop symbol is a box divided in three areas:

e The upper left triangle contains the initialization of the control variable
(e.g. k = 1).

e The right center triangle holds the stay-in-loop-condition (e.g. k <= 15).

N

p .
\Stf’f/

prod = 1 { Cumulative variable }

k=1 { For—loop }

k<=15

no

yes prod

prod = prod * k

k=k+2

Figure 8: Solution to example 6.

e The bottom left triangle bears the prepare-to-next-iteration action (e.g.
k =k + 2).

The initialization action is executed only once, when we enter the loop.
Then, the condition is evaluated. If the condition turns out being true, we
move on to the actions following the yes branch, otherwise, we leave the loop
via the no path. On the other hand, at the end of each iteration the prepare-to-
next-iteration statement is executed, and, then, the loop condition is evaluated.
If the latter holds, a new iteration is performed, otherwise we finish the for-loop
by leaving through the no branch.

1.3 Exercises

1. The number of sounds that a cricket produces is proportional to the envi-
ronment temperature. Accordingly, we can determine the environmental
temperature by using the cricket as our thermometer. We have approxi-
mated the following mathematical relation:

N
T=—+40
1 +
where T is the temperature in Fahrenheit degrees, and N is the number
of sounds emitted per minute.

Write a program that computes and prints T after reading N. Your pro-
gram should not output anything if N is negative (since a cricket cannot
produce a negative amount of sounds).

. Given a quadratic equation ax? + bx 4+ ¢ = 0, write a program to find the
real roots by using the expression:

—b+Vb? — dac
p— 2T VU T A

2a

Hint: Real roots are the two x values for which the equation holds. They
are real because the argument (b*> — 4ac) is nonnegative.

. Write a program that determines and prints whether an input number is
positive, negative or zero.

. Write a program such that, after reading three numbers (in sequence),
determines if they are in ascending order (i.e. after reading A, then B,
then C, the program should print “Yes” if A < B < C). Hint: Check the
AND operator (&& in C++).

. Write a program that allows to compute the payment to a worker, taking
into account his salary, overtime hours, and category. In order to pay
overtime, we consider table 2:

Category | Payment per overtime hour
1 $30
2 $38
3 $50
4 $70

Table 2: Overtime payment for each category

Each worker can have at most 30 overtime hours; if they have more than
that, we will only pay them 30 hours. Workers whose category is any
other than 1, 2, 3, or 4, are not paid overtime.

. Write a program such that given 270 integer numbers, it computes the
sum of the odd numbers and the average of the even numbers.

. Write a program that obtains and prints the sum of the terms in the
following series:

2,5,7,10,12,15,17, ..., 1800

. Write a program that computes and prints the average of several integers.
Assume that the last input value is the sentinel 9999. A typical input
sequence could be:

10 8 11 7 9 9999

9. Calculate the value of 7 from the infinite series

S
T 3+

4 4 4+4 4+
5 7 9 11 7

Print a table that shows your approximations to 2, 3, ...20 terms of the
previous series. How many terms did you need to get 3.141597

2 From Flow Charts to C++

Once that you find yourself comfortable solving problems with flow charts, it
is not difficult to move on to coding them in any language. Particularly, we
will show a couple of examples using C++ from problems we described in the
previous section.

Since all variables you write in a flow chart are already necessary, they pass
directly to C++ where you only have to take care of declaring them before they
are used, and giving them appropriate types.

2.1 Examples
Example 7

Recall figure 6 from example 4. Since we have solved the problem graphically,
we do not have to check the problem statement again — everything has been
summarized in the flow chart.

#include <iostream>
using namespace std;

int main()

{
double sum = 0.0; // Accumulates workers’ salaries.
int k = 0; // Control variable.
while(k < 10) // While loop.
{

cout << "Provide a salary: $";
double salary;

cin >> salary; // Read in salary.
sum += salary; // Accumulate salary.
k++; // Update the control variable.

3

cout << "Average salary is: $" << sum/10 << endl;

10

return O;

Example 8

In example 6 (figure 8) we used the for-loop as an alternative to the while-loop.
The flow chart presented there accurately displayed how we should frame the
solution to that problem. Now, it will be easier to translate such diagram into
C++ code.

#include <iostream>
using namespace std;

int main()

{
int prod = 1; // Variable to hold product.
for(int k = 1; k <= 15; k += 2) // A for loop.
prod *= k;
cout << "The product of odd numbers between 1 and 15 is: ";
cout << prod << endl;
return O;
}

2.2 Exercises

Translate all of the flow charts you drew in section 1 exercises into C++ code.
Check that the logic you developed there is correct by testing your inputs with
different values (where possible).

References

[1] H. M. Deitel, and P. J. Deitel. (1995) Cémo Programar en C/C++. Segunda
Edicién. Prentice Hall.

[2] O. Cairé. (2005) Metodologia de la Programacién: Algoritmos, Diagramas
de Flujo y Programas. Tercera Edicién. Alfaomega Grupo Editor.

11

