Pointers

Section 1D

—

Declaring and Initializing

Pointers
® A pointer is a variable that stores a memory
address:
int count = 7; // A variable of type integer.
int *xcountPtr = &count; // A pointer to an integer var.
Pointer type Address
operator

countPtr

1000

Basic Example

double y = 5.2; // Variable that holds a double.
double xyPtr; // Variable that holds a pointer to a double.

// What's the address of y?

cout << "The address of y is " << &y << endl; y

// Assign address of y to yPtr. E
yPtr = &y; 1000

// What's the address that yPtr holds? yPtr

cout << "yPtr is " << yPtr << endl;

// What's the double that yPtr points to?
cout << "xyPtr is " << xyPtr << endl; 4000

Dereferencing a pointer

Exercise 1

// What does the following print out?
cout << "*&y 1is " << *k&y << endl;
cout << “&xy 1is " << &xy << endl;

1000

// And...
cout << "&kxyPtr is " << &kxyPtr << endl; yPtr

’

cout << "x&yPtr is " << x&yPtr << endl;

’

4000

Remember!
& and * are
complimentary y
operators

Functions and Pointers

e Simulating pass-by-reference:

void cube(intx nPtr)

{
}

*nNPtr = (xnPtr) x (*nPtr) x (*nPtr);

int main()
{

int number;

cout << "Provide an integer number: ";
cin >> number;

cout << "The original number is: " << number << endl;
cube(&number); // We pass the address of number.
cout << "The new value of number is: " << number << endl;

Exercise 2

® Find the error, if any, in the following statements:

a int sknumber; int xnPtr, result;
cout << sknumber; d result = 3;
nPtr = &result;
double *dPtr; result *x= nPtr;
b int xiPtr; cout << result;
iPtr = dPtr;

_ double x = 19.34;
c int *x, y; e double *xxPtr = &x;
X =Y, cout << “The address of x 1is
<< *xPtr << endl;

'

Exercise 3

® Write a function that swaps the values between two
Integer variables. For example:

® Before function: x =1,y = 2.
® Afterfunction: x =2,y =1.

Exercise 4

Write a function to find the real roots of a quadratic
equation by using the closed form:

—b + \/b2 — 4ac
2a

L1.2 =

Your function must simulate pass-by-reference by

using pointers to the outputs x, and x, and return true

If they are real. Otherwise, return false, and leave x,
and x, unchanged.

Pointers and Arrays

int vI[5]; // Array of 5 integers.
int *vPtr = &v[0]; // A pointer to the first element in v.
3000 3004 3008 3012 3016
I 7V I T VI T VI T O
Vﬁptr Rule 1:

3000 We can add and subtract
integers to a pointer to an
array:

VPtr += 2 & [i] + j = &vI[i + j]

3008

3000 + 2*(size of an integer)

—

e T e -

Pointers and Arrays

int vI[5]; // Array of 5 integers.

int *xvPtr = v; // A pointer to the first element in v.
3000 3004 3008 3012 3016
IO e I TV I TE T T O

vPtr

Rule 2:
The name of an array is a

3000
constant pointer to the first
vPtr[2] element in the array:
EIIE v = &vI[0]

Rule 3:

We can use indexes with a pointers: o
vPtrl[i] = x(vPtr + El_________________J

Pointers and Arrays

int vI[5]; // Array of 5 integers.
int *xvPtrl = v; // A pointer to the first element in v.
int *xvPtr2 = &v[4]; // A pointer to the last element in v.
3000 3004 3008 3012 3016
_viel | i1l | vI2] | vI3] | v[4] _
vPtril VPtr2
3000

Rule 4:

We can use relational operators to compare pointers:
VPtrl == vPtr2
vPtrl <= vPtr2
vPtrl >= vPtr2

Pointers and Arrays

int vI[5]; // Array of 5 integers.
int *xvPtrl = v; // A pointer to the first element in v.
int *xvPtr2 = &v[4]; // A pointer to the last element in v.
3000 3004 3008 3012 3016
vPtrl vPtr2
3000

vPtr2 - vPtrl = (3016 - 3000) / (size of an integer)

Rule 5:
We can subtract two pointers that are of the same type

and point into the same array:
vPtr2 - vPtrl = &vI[j] - &vIli]l = j - i

Exercise 5

* Write a program that converts letters in a C string
to uppercase. Use pointers to traverse the array of

characters.
int main()
{ char s[] = "this is the string to transform";
for(char xsPtr = s; *sPtr != '\Q'; sPtr++)

xsPtr = toupper(*xsPtr);

cout << s << endl;

return 0;

Exercise 6

* Make the snippet of code you wrote in Exercise 5 into a
function that converts letters of a C string to uppercase. Your
function must return a pointer to the just transformed string.

charx toUppercase(char xsPtr)

{

// Remember where the string began.
char xbeginning = sPtr;

for(; *xsPtr != '\0'; sPtr++)
*sPtr = toupper(*sPtr);

return beginning;

Questions?

® You may find this material and solutions to the
programming exercises at:

http://cs.ucla.edu/~langel/cs31/session’/

