
Data Structures and
OOP
Section 1D

Structures
�  A structure is a collection of related variables that

may be of several different data types.

struct Card !
{ !
 const char *suit; // A pointer to a constant char (C string).!
 int face; // A number between 1 and 13.!
}; !

User-defined data type

Properties or data members

Using struct data types
Card c1; // Create a card!
c1.suit = "Hearts"; // Fill out data members!
c1.face = 3;

dot operator

Card c2; // Create another card!
c2 = c1; // Assign member-to-member!
c2.suit = "Spades";

assignment

Card deck[52]; // An array of cards!
deck[0].suit = "Diamonds"; !
deck[0].face = 1;

arrays

Using struct data types
Card *cPtr; // A pointer to a card!
cPtr = &c1; !
(*cPtr).face = 1; // Modify a member using '.’!
cPtr->face = 7; // Modify a member using '->'

pointers

Card& cRef = c2; // Reference to card!
cRef.face = 13;

references

Exercise 1
�  Write a function that prints the face and suit of a

card in the following format:
�  “Your card is a # of $”, where # is the face, and $ is

the suit of the card.

�  Try with two choices of input:
�  A constant reference to a card object.
�  A pointer to a constant card object.

Exercise 2
�  We have declared a deck of 52 cards as follows:

Card deck[52]; !

�  Write a function that initializes this deck to 13 cards per suit.
This function should also receive the array of C strings:

{ “Hearts”, “Diamonds”, “Clubs”, “Spades” } !

�  Write a function that shuffles the cards; that is, randomly
swaps cards within the deck we declared above.

Exercise 3
�  Find the error(s) and propose a solution!

Card *cPtr = &deck[2]; !
cout << *cPtr->face; !

Card hearts[13]; !
hearts.suit = “Diamonds”; !

struct Person { !
 char lastName[15] !
 char firstName[15] !
 int age; !
} !

Person p; !
Card d; !
p = d; !

(a) !

(b) !

(c) !

(d) !

Object Oriented Programming
�  The OOP models real world objects through software. It

encapsulates data (attributes) and functions (behavior) in
packages called objects.

�  Objects have the property of hiding information, but they can
communicate with their surroundings (other objects) by well-
defined interfaces.

struct !

obj0 !

obj1 ! obji !

objn !

data members

member functions

OPP struct example

struct Time !
{ !
private: !

!
int hour; // 0 - 23.!
int minute; // 0 - 59.!
int second; // 0 - 59.!
!

public: !
!
Time(); !
void setTime(int, int, int); !
void print24(); !
void printAMPM(); !

};

User-defined data type

Can be accessed only
within member functions

Can be accessed from outside the object

// Constructor.!
Time::Time() !
{ !

hour = minute = second = 0; !
} !
!
// Set time.!
void Time::setTime(int h, int m, int s) !
{ !

hour = (h >= 0 && h <= 23)? h: 0; !
minute = (m >= 0 && m <= 59)? m: 0; !
second = (s >= 0 && s <= 59)? s: 0; !

}

Defining Time’s functions

Scope operator :: !
How do we define?
void print24(); !
void printAMPM();

Time sunset; // Object !
sunset.hour = 20; !
sunset.minute = 5; !
sunset.second = 30; !
sunset.setTime(20, 5, 30); !

!
Time *sunsetPtr = &sunset; // Pointer!
(*sunsetPtr).print24(); !

!
Time& sunsetRef = sunset; // Reference!
sunsetRef.printAMPM(); !

!
Time mealTimes[3]; // Array!
mealTimes[0].setTime(11, 0, 0); // Breakfast!
(*(mealTimes+1)).setTime(16, 30, 0); // Lunch!
(mealTimes+2)->setTime(22, 30, 30); // Dinner

Creating Time’s instances
// Error!!! !
// Error!!!
// Error!!!

const Time midnight; !
midnight.setTime(0, 0, 0);!
midnight.print24(); !
midnight.printAMPM();

Creating Time’s const instances
�  Is this code correct?

�  We need to fix the
member functions’
declaration and
definition:

struct Time !
{ !
private: !

int hour; // 0 - 23.!
int minute; // 0 - 59.!
int second; // 0 - 59.!
!

public: !
Time(); !
void setTime(int, int, int); !
void print24() const; !
void printAMPM() const; !

};

// Error!!! !
// Error!!!
// Error!!!

Exercise 4
�  Write a member function to the struct Time, that

receives another Time object and returns:
�  0 if input object and receiver object are equal.

�  +1 if receiver object is greater than input object.
�  -1 if receiver object is smaller than input object.

int Time::compare(const Time& in) const

Today’s Material
�  Find this material and the answers to programming

exercises at:

http://cs.ucla.edu/~langel/cs31/session8

