
Classes 
Section 1D 



What is a C++ class? 

class SalesPerson !
{ !
private: !
   !
   double sales[12];            // 12 monthly sales figures.!
   double totalAnnualSales();   // Utility function.!

!
public: !
   !
   SalesPerson();               // Constructor.!
   void setSales();             // User supplies sales figures.!
   void printAnnualSales(); !
}; 

Encapsulates a Sales Person properties and methods 

Members accessible ONLY within the class 

Members accessible from everywhere, even outside the class 



Constructors 

•  A constructor is a member function whose name is the same as 
the class’ name. 

•  Every time an object is created, its class constructor is invoked 
automatically. Its job is to initialize the object appropriately. 

SalesPerson::SalesPerson() !
{ !
   for( int I = 0; I < 12; I++ ) !
      sales[I] = 0; !
} 

class SalesPerson !
{ !
private: !
   !
   double sales[12]; !
   double totalAnnualSales(); !

!
public: !
   !
   SalesPerson(); !
   void setSales(); !
   void printAnnualSales(); !
}; 



Constructors 

•  We can have more than one constructor for a class (as long as 
they have different signature). 

•  How can we define a constructor that gets as input an array of  
double values? 

SalesPerson::SalesPerson() !
{ !
   for( int I = 0; I < 12; I++ ) !
      sales[I] = 0; !
} !
!
SalesPerson::SalesPerson( const double* s ) !
{ !
   for( int I = 0; I < 12; I++ ) !
      sales[I] = s[I]; !
} 

class SalesPerson !
{ !
private: !
   double sales[12]; !
   double totalAnnualSales(); !

!
public: !
   SalesPerson(); !
   SalesPerson( const double* s ) !
   void setSales(); !
   void printAnnualSales(); !
}; !
 



How do we create objects? 

SalesPerson s1; !
s1.setSales(); !
s1.printAnnualSales(); !

double arr[] = { !
   1, 2, 3,  4,  5,  6,   !
   7, 8, 9, 10, 11, 12 }; !
SalesPerson s2( arr ); !
s2.printAnnualSales(); 

Creating an object by using the default 
(empty-argument) constructor. 
No parentheses after the object’s name!!! 

Creating an object by using a constructor 
with arguments. 
Pass arguments between parentheses after 
the object’s name!!! 

Recall to use the dot operator to access members in the class if  the left-
hand side is an object, or the arrow operator if  the left-hand side is a 
pointer to an object. 



Exercise 1 

•  Create a class called Complex to execute complex-number 
arithmetic. A complex number is represented as 

realPart + imaginaryPart * i 

•  Write a member function that adds another Complex number 
to the caller object and returns the result. 

•  Write a member function that subtracts another Complex 
number from the caller object and returns the result.  

•  Write a member function that prints out the Complex number 
in the format (realPart, imaginaryPart) !



The const function qualifier 

•  If  an object is const, it is only allowed to use member 
functions that promise not to modify the object contents. This 
functions must be declared and defined as const. 

/** !
 * @brief Printing the complex number. !
 */!
void print() const!
{ !
   cout << "(" << realPart!
   << ", " << imaginaryPart << ")" << endl; !
} 

!
int main() !
{ !
   const Complex c2( 3, 1 ); !

!
   c2.print(); !
} !
 



The this pointer 

•  Every C++ object has a pointer to itself, called this.  

•  The this pointer is used to implicitly reference all function and 
data members in an object. It can be used explicitly to 
differentiate function parameters that have the same name as 
the object data members. 

/** !
 * @brief Constructor with arguments. !
 */!
Complex( double realPart, double imaginaryPart ) !
{ !
   this->realPart = realPart; !
   (*this).imaginaryPart = imaginaryPart; !
} 



Exercise 2 

•  Write a class that represents a Point in 2D, with public 
coordinates x and y. It should have 

•  A default constructor that sets x and y to zero. 

•  A constructor that takes 2 arguments, named x and y, for 
both of  the object coordinates, respectively. 

•  A function that receives as input another 2D Point and 
computes the distance with the caller Point object. 



Dynamic Memory Allocation 

•  We can create objects “on the fly,” in runtime, by using the 
operator new. 

•  Dynamically created objects are allocated in the heap, and stay 
there until we remove them by using the operator delete. 

Point *pPtr1 

1000 !

pPtr1 = new Point 

pPtr1 

1000 !

pPtr1 

5000 !

delete pPtr1 

1000 !

pPtr1 

Dangling pointer 



Dynamic Memory Allocation 

•  How do we dynamically create an object when its constructor requires 
arguments? 

Point *pPtr2 

2000 !

pPtr2 = new Point(3, 4) 

pPtr2 

2000 !

pPtr2 

6000 !

delete pPtr2 

2000 !

pPtr2 

Dangling pointer 

cout << pPtr1->distance( *pPtr2 ) << endl; 

•  Before delete-ing pPtr1 and pPtr2, we can use them as follows: 



Exercise 3 

•  Write a class Path which may have up to 100 Point 
objects: 
•  It should have an array of  up to 100 dynamically created 

points, which starts off  empty. 
•  A pointCount member keeps track of  how many points are 

in the path. 
•  It provides the user with an add( double x, double y ) 

function that allows to ‘insert’ a new point in the path. 
•  The user can retrieve the ith point by using a getPoint(int I) 

member function. 
•  It is possible to obtain the total length of  the path by calling a 
getTotalDistance() method. 



Destructors 

•  A destructor is a special function that is unique in a class, and 
it’s called right before the object is destroyed. 

•  Use it to free any memory your object created dynamically. 

/** !
 * @brief Destructor. !
 */!
~Path() !
{ !
   // Free all points memory.!
   for( int I = 0; I < pointCount; I++ ) !
      delete points[I]; !

!
   cout << "Destructor has been called!”; !
} 

Notice  
“~Class_Name” 



Questions? 

•  You may find this material and answers to the 
proposed exercises at: 

http://cs.ucla.edu/~langel/cs31/session9 


